Quadrature formulas for Fourier coefficients
نویسندگان
چکیده
منابع مشابه
Kronrod extensions with multiple nodes of quadrature formulas for Fourier coefficients
We continue with analyzing quadrature formulas of high degree of precision for computing the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials, started recently by Bojanov and Petrova [Quadrature formulae for Fourier coefficients, J. Comput. Appl. Math. 231 (2009), 378–391] and we extend their results. Construction of new Gaussian quadrature form...
متن کاملQuadrature formulae for Fourier coefficients
We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Michhelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a func...
متن کاملOPTIMAL QUADRATURE FORMULAS FOR FOURIER COEFFICIENTS IN W ( m , m − 1 ) 2 SPACE
This paper studies the problem of construction of optimal quadrature formulas in the sense of Sard in the W (m,m−1) 2 [0, 1] space for calculating Fourier coefficients. Using S. L. Sobolev’s method we obtain new optimal quadrature formulas of such type for N + 1 ≥ m, where N + 1 is the number of the nodes. Moreover, explicit formulas for the optimal coefficients are obtained. We investigate the...
متن کاملOn weight functions which admit explicit Gauss-Turán quadrature formulas
The main purpose of this paper is the construction of explicit Gauss-Turán quadrature formulas: they are relative to some classes of weight functions, which have the peculiarity that the corresponding s-orthogonal polynomials, of the same degree, are independent of s. These weights too are introduced and discussed here. Moreover, highest-precision quadratures for evaluating Fourier-Chebyshev co...
متن کاملConstruction of Optimal Quadrature Formula for Numerical Calculation of Fourier Coefficients in Sobolev Space
Computation of integrals of strongly oscillating functions is one of the more important problems of numerical analysis, because such integrals are encountered in applications in many branches of mathematics as well as in other science such as quantum physics, flow mechanics and electromagnetism. Main examples of strongly oscillating integrands are encountered in different transformation, for ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 231 شماره
صفحات -
تاریخ انتشار 2009